Thermal Management Challenges for 3D Packaging

Thomas S. Tarter

Package Science Services LLC

August 4, 2010

IMAPS Luncheon Presentation

Outline

- Need, Evolution and Proliferation of 3D packaging
 - Moore's Law and Packaging
 - Density and Power
 - Miniaturization and Performance
 - Cost
- Thermal Management of 3D Packaging
 - Stacked Chip Package
 - Traditional interconnect (WB, FC)
 - Through silicon via
- Summary and Conclusion

Moore's Law and packaging

- The industry has been able to keep pace with Moore's Law by shrinking transistors
- Limitations to transistor gate size are an issue in the future and interconnect losses pose a serious problem for high speed chips now
- 3D packaging provides increased density and performance and is a key element to meeting/exceeding Moore's predictions

Density and Power

- In the last decade chip stacking has been used as a way to increase density using like and mixed die sets
- The proliferation of powerful mobile devices has continued to test the limits of density and performance in compact systems
- More power in smaller > spaces

- Consumer demand for higher performance and smaller form factor continues
- Stacked chip packaging is a primary enabler for these devices
- Thermal management issues are core to the success of a given multi-chip design

Miniaturization and Performance

- High performance computing is limited by interconnect losses
- Interconnect scalability cannot keep pace with gate length
- Interconnect switching power can be 50% of overall dynamic power
- Stacking chips can reduce chip-to-chip interconnect length but does not address on-chip interconnect length

Through-silicon vias help to reduce interconnect losses on-chip and chip-to-chip

Cost

- Reducing cost or maintaining cost with more functionality is the number one priority
- Stacking packages and chips may be less costly than advancing lithography
- TSV and other 3D packaging technologies reduce real estate, material usage and back-end process costs

Stacked Package Examples

3D Packaging

Toshiba MCP

4 Die µZ® Ball Stack

8 Die µZ® Ball Stack

Tessera uZ Ball Stack Package

Elpida Memory Tape Carrier Package

STEC TSOP Stacking

www.bit-tech.net

3D Packaging

Assembled Package-on-Package

Package on-Package (PoP) Top Package Stacked Die Mould Cap Bottom Package Ball Top package - Integrates high-capacity memory device by die-stacking Bottom package - Integrates high-density digital logic devices (processor)

Frost and Sullivan

AMD

Chip Stacking

Extreme Chip Stacking

Elpida Memory 1.4mm MCP with 20 Stacked Dies

Thermal Management of Stacked-Chip Packaging

3D Thermal Management

- It is easy to see that in 3D designs, thermal management can be a challenge
- Chips can't always be placed a particular order without the use of spacers
- Spacers increase thermal resistance and add low-k adhesive layers
- Care must be taken not to align hot spots

Heat removal in traditional packages is provided by external heat sinking, either through the top or the bottom or both

Stacked Chip Package Thermal

- Plastic overmolded package with 5 chips
 - · Logic, memory, special function
 - Varied die size dictates stacking order
 - Chip on bottom of package (cavity)
 - 1.2W total power dissipation
 - $TA = 22^{\circ}C$

Stacked Chip Model Results

- FEM Models in SolidWorks COSMOS
- Simple block models include die-attach material thermal resistance and bulk heat transfer coefficients
- Show the effect of heat sinking

No HS	Bottom Only	Top Only	Both
134.2	131.5	123.9	120.9
ΔΤ	2.7	10.3	13.3

TSV Roadmap

TSV Thermal

- TSV stacked chips pose a unique thermal management challenge
- The fine Cu pillars help to move heat vertically through the stack
- Gaps are introduced that must be filled
- Peripheral TSV are typical but arrays of vias are being investigated to increase heat flow
- Flexibility in placement of arrayed vias will be highly dependent on chip layout and density

TSV Thermal

- Gaps are introduced that must be filled
- Peripheral TSV are typical but arrays of vias are being investigated to increase heat flow
- Due to the small size of TSV, computer modeling requires sub-modeling techniques

Thermal Management for TSV

- Use high-thermal conductivity interlayer adhesives / fillers
- Rotate chips such that hot spots are not spatially aligned
- Use materials that protrude from the 'stack' and provide direct attachment to heat removal structure
- Microchannel cooling

- Add multiple Cu TSV's to stack
- High thermal conductivity interposer between chips

Summary

- 3D Packaging is enabling a new generation of high density devices
- Challenges exist in design, process, materials and characterization
- Thermal Management is a primary concern
- Methods must be developed to measure and specify 3D package thermal parameters

TSV and Stacked Thermal Issues

- Thermo-electrical issues
 - Speed / propagation of chips with different temperatures
 - Change in via capacitance due to electrical field strength in Si
- Thermo-mechanical issues
 - Placement of TSV near actives can compress or expand gate
 - CTE mismatch may cause cracking or delamination

THANK YOU!

Tom Tarter ttarter@pkgscience.com

